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Abstract

Based on the power series method, the static and dynamic stiffness matrices for the flexural–torsional buckling and free

vibration analysis of thin-walled beam with non-symmetric cross-section subjected to linearly variable axial force are newly

presented. Additionally, the static stiffness matrix for the lateral buckling analysis of non-symmetric beam is presented for the

first time. For this, the elastic strain energy, the potential energy considering the second-order terms of finite rotations, and the

kinetic energy for thin-walled beam with non-symmetric cross-section are introduced. Then equations of motion and

force–deformation relations are derived from the energy principle. Explicit expressions for displacement parameters are derived

based on power series expansions of displacement components. Finally, the static and dynamic element stiffness matrices are

determined using force–deformation relationships. In order to verify the accuracy of this study, the numerical solutions are

presented and compared with the finite element solutions using the Hermitian beam elements and ABAQUS’s shell elements.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled beams have been widely used as the most common load-carrying systems in many civil,
mechanical and aerospace engineering applications, both in their stand-alone forms and as stiffeners for plate
and shell structures. The thin-walled sections, such as I section, channel and angle, are appealing because they
offer a high performance in terms of minimum weight for a given strength. However, it is well known that such
weight-optimized members having arbitrary cross-sections are very susceptible to flexural–torsional and
lateral buckling and display complex vibrational behavior. Therefore, the accurate prediction of their stability
limit state and natural frequency is of fundamental importance in the design of thin-walled structures.

Up to the present, investigation into the stability and vibrational behavior of beam members has been
carried out extensively since the early works of Vlasov [1] and Timoshenko and Gere [2]. Stability and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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vibration analyses of beam become quite difficult problems when other than simple boundary conditions exist,
where the cross-section has one or no axis of symmetry. Closed-form solutions are mathematically complex
and exist only for a limited number of problems. Many numerical techniques such as finite element method
have also been used to solve the stability of thin-walled beams. Barsoum and Gallagher [3], Chen and Atsuta
[4] and Attard [5] presented a finite element formulation based on generalized displacement field. Kitipornchai
and Trahair [6] modified Barsoum and Gallagher’s formulation so that it could be applied to mono-symmetric
beams. Robert and Burt [7] used the energy method to derive approximate formulas for simply supported
mono-symmetric I-beams. Sun and Huang [8], in order to study impact problems, developed the mass and
stiffness matrices for a beam element with fifth-order shape functions. Coulter and Miller [9] investigated the
buckling and vibration of plane beam subjected to distributed axial force using the finite element method.
Also, vibrational behavior of an initially stressed beam on discretely spaced elastic supports has been studied
by Park et al. [10]. They derived a theoretical formulation of the system using the variational principle.
Andrade and Camotim [11] presented a general variational formulation to analyze the lateral–torsional
buckling behavior of singly symmetric thin-walled tapered beams. Their results were obtained by means of the
Rayleigh–Ritz method, using trigonometric functions to approximate the beam critical buckling mode. The
derivation and implementation of generalized beam theory was presented by Silvestre and Camotim [12],
based fully analytical formulae to evaluate distortional bifurcation stresses in cold-formed steel C and
Z-section column (uniform compression), beams (pure bending) and beam-columns (uniform compression+
pure bending) with arbitrarily inclined single-lip stiffeners. Yu and Schafer [13] conducted a series of
distortional buckling tests on cold-formed steel C and Z sections in bending to establish the capacity in
distortional buckling failures. Also, a series of new flexural tests focused on the role of web slenderness in local
buckling failures of C and Z sections was reported by Yu and Schafer [14].

Another effective approach solving the flexural–torsional buckling and vibration problems of beam is to
develop the stiffness matrices based on the solution of the differential equation of beam. Most of those studies
adopted an analytical method that required explicit expressions of exact displacement functions for governing
equations (Friberg [15], Banerjee [16–18], Banerjee and Williams [19–21], Banerjee and Fisher [22], Leung and
Zeng [23]). This procedure was very effective in saving the computing time due to the closed-form solution
which can be easily derived by the help of symbolic computation. However, these analytical operations were
often too complex to yield exact displacement functions in the case of solving a system of simultaneous
ordinary differential equations with many variables. Also, those studies were restricted to the analysis of beam
with doubly or mono-symmetric cross-sections. Lee et al. [24] presented a transfer matrix for three-dimensional
vibration analysis of piping system containing fluid flow. For the lateral buckling analysis, Leung [25] presented
the stiffness matrix of frame under a constant in-plane moment using the analytical method. Spillers and
Rashidi [26] generated the member stiffness matrix of beam without warping effect under a concentrated load
based on the series solution approach. However, they considered the beam with doubly symmetric section only.

Recently, Kim et al. [27] proposed the improved numerical method to exactly determine the static stiffness
matrix for the flexural–torsional buckling analysis of thin-walled beam with non-symmetric section subjected to
constant axial force and the dynamic stiffness matrix for free vibration analysis. In their study, they
transformed a set of the second-order ordinary differential equations with constant coefficients into a set of the
first order differential equations and solved the associated linear eigen-problem with non-symmetric matrices.
However, unfortunately, their method is not valid any longer for the flexural–torsional buckling and free
vibration analysis of thin-walled beam subjected to linearly variable axial force and the lateral buckling analysis
of a beam subjected to a constant lateral force since the differential equations have the variable coefficients.

To resolve this shortcoming, this paper intends to present a new static and dynamic stiffness matrices for the
flexural–torsional buckling and free vibration analysis of thin-walled beam with non-symmetric cross-section
subjected to linearly variable axial force and the lateral buckling analysis based on the power series method.
The important points presented are summarized as follows:
1.
 Equations of motion and force–displacement relations are derived from the total potential energy of a thin-
walled beam with a non-symmetric cross-section subjected to linearly variable axial force and moment.
2.
 A numerical method to evaluate the static and dynamic element stiffness matrices of thin-walled beam is
developed based on the power series expansions of displacement components.



ARTICLE IN PRESS
N.-Il. Kim et al. / Journal of Sound and Vibration 299 (2007) 739–756 741
3.
 In numerical examples, to demonstrate the accuracy and validity of this study, numerical solutions are
presented and compared with finite element solutions using the Hermitian beam elements and ABAQUS’s
shell elements. Particularly, the influence of the constant and linearly variable axial force on the vibrational
behavior of non-symmetric beam is investigated.

2. Equations of motion of thin-walled beam with non-symmetric cross-section

2.1. Total potential energy under consideration

For the stability analysis of space frame which consist of structural members with different directions in
space, Argyris et al. [28,29] pointed out that most of the previous finite element formulation that include only
the first-order terms of rotational parameters appear to be incorrect. It is largely due to deficiency of moment
equilibrium conditions at the joint and the non-commutative nature of rotations about fixed axes. To resolve
these difficulties, Argyris et al. introduced the semitangential rotations and semitangential moments that have
mechanisms corresponding to Ziegler’s [30] semitangential torque, and derived the geometric stiffness matrix
of the space frame using the natural mode formulation. Chen and Blandford [31] formulated the large
deformation theory of the thin-walled space frame by selecting Rodriguez vector components as the rotational
displacement parameters. Teh and Clarke [32,33] indicated the awkwardness of a quasi-tangential and
semitangential moment from the true behavior of internal moment and non-symmetry of the element tangent
stiffness matrix, and they introduced the fourth kind of conservative moment and vectorial rotation.

In this study, the potential energy functional due to the initial axial force and bending moments is
consistently used corresponding to semitangential moments because the potential energy due to the bending
moments has been derived based on inclusion of second order terms of semitangential rotations.

For this, we consider seven displacement parameters and stress resultants defined at the coordinate system (x1,
x2, x3) are shown in Fig. 1. The x1, axis coincides with the centroid; x2, x3, are not necessarily principal inertia axes;
Ux, Uy, Uz and o1( ¼ y), o2( ¼ �U 0z), o3( ¼ U 0y), are rigid body translations and rotations of the cross-section
with respect to x1, x2 and x3 axes, respectively, and f( ¼ �y0) is the parameter defining warping of the cross-section.

The total displacement U can be written by the summation of the first- and second-order terms of the
displacement parameters as

UT ¼ U1 þU�1;U2 þU�2;U3 þU�3
� �

, (1)

where

U1 ¼ Ux �U 0zx3 �U 0yx2 � y0f, (2a)

U2 ¼ Uy � yx3, (2b)

U3 ¼ Uz þ yx2 (2c)
(a) (b)

Fig. 1. Notation for displacement parameters and stress resultants: (a) displacement parameters, (b) stress resultants.
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and

U�1 ¼
1

2
�yU 0zx2 þ yU 0yx3

h i
, (3a)

U�2 ¼
1

2
� y2 þU 0

2
y

� �
x2 �U 0yU 0zx3

h i
, (3b)

U�3 ¼
1

2
�U 0yU 0zx2 � y2 þU 0

2
z

� �
x3

h i
. (3c)

In Eq. (1), Ui and U�i denote the first- and second-order terms of the displacement parameters, respectively.
The ‘prime’ denotes derivative with respect to x1. A complete set of linear and nonlinear strain–displacement
relations for the thin-walled beam-columns are expressed as

e11 ¼ U1;1 ¼ U 0x �U 00zx3 �U 00yx2 � y00f, (4a)

2e12 ¼ U1;2 þU2;1 ¼ �y
0f;2 � y0x3, (4b)

2e13 ¼ U1;3 þU3;1 ¼ �y
0f;3 þ y0x2, (4c)

2Z11 ¼ U2
2;1 þU2

3;1 ¼ U 0y � y0x3

� �2
þ U 0z þ y0x2

� �2
, (5a)

2Z12 ¼ U1;1U1;2 þU2;1U2;2 þU3;1U3;2

¼ U 0x �U 00zx3 �U 00yx2 � y00f
� �

�U 0y � y0f;2
� �

þ U 0z þ y0x2

� �
y, ð5bÞ

2Z13 ¼ U1;1U1;3 þU2;1U2;3 þU3;1U3;3

¼ U 0x �U 00zx3 �U 00yx2 � y00f
� �

�U 0z � y0f;3
� �

� U 0y � y0x3

� �
y ð5cÞ

and

e�11 ¼ U�1;1 ¼
1

2
� yU 0zð Þ

0
x2 þ yU 0y

� �0
x3

� �
, (6a)

2e�12 ¼ U�1;2 þU�2;1 ¼ �
1

2
yU 0z þ y2 þU 0

2
y

� �0
x2 þ U 0yU 0z

� �0
x3

h i
, (6b)

2e�13 ¼ U�1;3 þU�3;1 ¼
1

2
yU 0y � U 0yU 0z

� �0
x2 � y2 þU 0

2
z

� �0
x3

h i
, (6c)

where eij and Zij are the conventional linear and nonlinear strain due to Ui, respectively, and e�ij the linear strain
due to U�i . Stress resultants in Fig. 1(b) are defined by

F 1 ¼
R

A
t11 dA; F 2 ¼

R
A
t12 dA; F3 ¼

R
A
t13 dA; M1 ¼

R
A
t13x2 � t12x3ð ÞdA;

M2 ¼
R

A
t11x3 dA; M3 ¼ �

R
A
t11x2 dA; Mf ¼

R
A
t11fdA; Mp ¼

R
A
t11 x2

2 þ x2
3

� �
dA;

(7a2h)

where tij is the second-Piola–Kirchhoff stress, F1, F2, and F3, the axial force and shear forces, respectively,
M1 the total twisting moment with respect to the x1-axis, M2 and M3 the bending moments with respect
to x2 and x3 axes, respectively, Mf the bimoment about the x1 axis, and Mp the stress resultant as a Wagner
effect.

Now, the total potential energy of a thin-walled beam element under consideration is expressed as

P ¼ PE þPG �PM �Pext, (8)

where PE is the elastic strain energy, PG the potential energy due to combined effects of the initial stresses,
body and surface forces, PM the kinetic energy, and Pext the potential energy due to the element nodal forces.



ARTICLE IN PRESS
N.-Il. Kim et al. / Journal of Sound and Vibration 299 (2007) 739–756 743
The detailed expressions for each term of the total potential energy are

PE ¼
1

2

Z l

0

Z
A

tijeij dAdx1, (9a)

PG ¼

Z l

0

Z
A

0tij Zij þ e�ij

� �
� 0biU

�
i

h i
dAdx1 �

Z s

0

0TiU
�
i ds, (9b)

PM ¼
1

2

Z l

0

Z
A

r _U
2

i dAdx1, (9c)

Pext ¼
1

2

Z s

0

Z
A

TiUi ds, (9d)

where l and A are the element length and the area, respectively, 0bi and
0Ti the body and surface forces,

respectively, and r the density.
Substituting the displacement expansions in Eqs. (2) and (3) and the strain–displacement relations in

Eqs. (4)–(6) into Eq. (9a–d), and integrating over the cross-section, Eq. (9a–d) can be expressed as

PE ¼
1

2

Z l

0

EAU 0
2
x þ EI2U 00

2
z þ EI3U

002
y þ EIfy

002
þ GJy02 þ 2EI23U 00yU 00z

h
þ 2EIf2U

00
zy
00
þ 2EIf3U

00
yy
00
i
dx1, ð10aÞ

PG ¼
1

2

Z l

0

0F1 U 0
2
y þU 0

2
z

� �
þ0F 2U

0
zy� 0F3U 0yyþ 0M1 U 00yU 0z �U 0yU 00z

� �h
þ 0M2 U 00yy�U 0yy

0
� �

þ 0M3 U 00zy�U 0zy
0

� �
þ 0Mpy

02
i
dx1, ð10bÞ

PM ¼
1

2
ro2

Z l

0

A U2
x þU2

y þU2
z

� �
þ

h
I2U 0

2
z þ I3U

02
y þ I0y

2
þ Ify

02

þ 2I23U 0yU 0z þ 2If2U
0
zy
0
þ 2If3U 0yy

0
i
dx1, ð10cÞ

Pext ¼
1

2
UT

e Fe, (10d)

where E is the Young’s modulus, G the shear modulus, J the torsional constant, and I2, I3, I0, If2, If3 the
sectional constants of which the detailed expressions may be referred to Kim and Kim [34], o the circular
frequency, and Ue and Fe the nodal displacement and nodal force vectors, respectively. And the linearly
variable axial force 0F1, the bending moment 0M2 and

0Mp can be expressed as

0F 1 ¼ xx1 þ z; 0M2 ¼
0F3x1;

0Mp ¼ xx1 þ zð Þb1 þ
0F 3x1b2, (11a2c)

where the detailed definitions of b1 and b2 may be referred to Kim and Kim [34].

2.2. Equations of motion and force– deformation relations

By variation of Eq. (8) with respect to Ux, Uy, Uz, and y, the equations of motion for thin-walled beam with
non-symmetric cross-section subjected to linearly variable axial force are derived as

EAU 00x þ ro2AUx ¼ 0, (12a)

EI3U
0000
y þ EI23U 0000z þ EIf3y

0000
� ro2 AUy � I3U

00
y � I23U 00z � If3y

00
� �

� 0F 01U
0
y �

0F1U
00

y

þ 20F3y
0
þ 0M1U

000
z þ

0M2y
00
¼ 0, ð12bÞ
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EI2U
0000
z þ EI23U 0000y þ EIf2y

0000
� ro2 AUz � I2U

00
z � I23U 00y � If2y

00
� �

� 0F 01U 0z �
0F1U

00
z

� 0M1U
000
y þ

0M3y
00
¼ 0, ð12cÞ

EIfy
0000
� GJy00 þ EIf2U 0000z þ EIf3U 0000y � ro2 I0y� Ify

00
� If2U

00
z � If3U

00
y

� �
þ 0M2U 00y þ

0M3U
00

z �
0Mpy

00
� 0F 01b1 þ

0M 0
2b2

� �
y0 ¼ 0. ð12dÞ

And force–deformation relations are

F1 ¼ EAU 0x, (13a)

F 2 ¼ � EI3U
000
y � EI23U 000z � EIf3y

000
� ro2I3U 0y � ro2I23U 0z � ro2If3y

0

þ 0F 1U
0
y �

0F3y� 0M1U 00z �
0M2y

0, ð13bÞ

F 3 ¼ � EI2U
000
z � EI23U 000y � EIf2y

000
� ro2I2U 0z � ro2I23U 0y � ro2If2y

0

þ 0F 1U
0
z þ

0M1U
00
y �

0M3y
0, ð13cÞ

M1 ¼ � EIfy
000
þ GJy0 � EIf2U 000z � EIf3U

000
y � ro2Ify

0
� ro2If2U 0z � ro2If3U

0
y

� 0:50M2U
0
y � 0:50M3U 0z þ

0Mpy
0, ð13dÞ

M2 ¼ �EI2U 00z � EI23U 00y � EIf2y
00
þ 0:50M1U 0y � 0:50M3y, (13e)

M3 ¼ EI3U
00
y þ EI23U 00z þ EIf3y

00
þ 0:50M1U 0z þ 0:50M2y, (13f)

Mf ¼ �EIfy
00
� EIf2U 00z � EIf3U

00
y. (13g)

3. Evaluation of element stiffness matrices

In this chapter, the static and dynamic element stiffness matrices of thin-walled beam subjected to linearly
variable axial force are evaluated. To this end, the axial displacement Ux may be supposed to be the linear
function from Eq. 12(a) and the other three displacement state vectors consisting of 12 displacement
parameters are considered as

dðxÞ ¼ Uy;U
0
y;U

00
y ;U

000
y ;Uz;U

0
z;U

00
z ;U

000
z ; y; y

0; y00; y000
D ET

. (14)

The solutions of three displacement parameters are taken as the following infinite power series:

Uy ¼
X1
n¼0

anxn; Uz ¼
X1
n¼0

bnxn; y ¼
X1
n¼0

cnxn. (15a2c)

Substituting Eqs. 15(a–c) into Eqs. 12(b–d) and shifting the index of power of xn, we get the following
equations:

X1
n¼0

EI3ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þanþ4 þ EI23ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þbnþ4½

þ EIf3ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þcnþ4 � ro2 Aan � I3ðnþ 2Þðnþ 1Þanþ2 � I23ðnþ 2Þðnþ 1Þbnþ2

�
�If3ðnþ 2Þðnþ 1Þcnþ2

�
� xðnþ 1Þanþ1 � xðnþ 1Þnanþ1 � zðnþ 2Þðnþ 1Þanþ2 þ 20F 3ðnþ 1Þcnþ1

þ 0F3 nþ 1ð Þncnþ1þ
0M1 nþ 3ð Þ nþ 2ð Þ nþ 1ð Þbnþ3� ¼ 0, ð16aÞ
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X1
n¼0

EI2ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þbnþ4 þ EI23ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þanþ4 þ EIf2ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þcnþ4

�
� ro2 Abn � I2ðnþ 2Þðnþ 1Þbnþ2 � I23ðnþ 2Þðnþ 1Þanþ2 � If2ðnþ 2Þðnþ 1Þcnþ2

� �
� xðnþ 1Þbnþ1

� xðnþ 1Þnbnþ1 � zðnþ 2Þðnþ 1Þbnþ2�
0M1ðnþ 3Þðnþ 2Þðnþ 1Þanþ3þ

0M3ðnþ 2Þðnþ 1Þcnþ2

�
¼ 0, ð16bÞ

X1
n¼0

EIf nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þcnþ4 � GJ nþ 2ð Þ nþ 1ð Þcnþ2 þ EIf3 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þanþ4

�
þ EIf2 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þbnþ4 � ro2 I0cn � If nþ 2ð Þ nþ 1ð Þcnþ2 � If2 nþ 2ð Þ nþ 1ð Þbnþ2

�
� If3 nþ 2ð Þ nþ 1ð Þanþ2

�
þ 0F 3 nþ 1ð Þnanþ1 � xb1 nþ 1ð Þncnþ1 � zb1 nþ 2ð Þ nþ 1ð Þcnþ2

� 0F3b2 nþ 1ð Þncnþ1 � xb1 nþ 1ð Þcnþ1þ
0M3 nþ 2ð Þ nþ 1ð Þbnþ2�

0F3b2 nþ 1ð Þcnþ1� ¼ 0, ð16cÞ

which can be compactly expressed in a matrix form

An anþ4; bnþ4; cnþ4

� �T
¼ Bn an; anþ1; anþ2; anþ3; bn; bnþ1; bnþ2; bnþ3; cn; cnþ1; cnþ2; cnþ3

� �T
. (17)

The detailed components of An and Bn are

An ¼

a1 a2 a3
a4 a5

symm: a6

2
64

3
75, (18)

where

a1 ¼ EI3 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ; a2 ¼ EI23 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ;

a3 ¼ EIf3 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ; a4 ¼ EI2 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ;

a5 ¼ EIf2 nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ; a6 ¼ EIf nþ 4ð Þ nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ:

(19a2f)

And

Bn ¼

g1 g2 g3 � � � g4 g5 � g6 g7 �

� � g4 �g5 g1 �g2 g8 � � � g9 �

� g10 g7 � � � g9 � g11 g12 g13 �

2
64

3
75, (20)

where

g1 ¼ �ro
2A; g2 ¼ �x nþ 1ð Þ

2; g3 ¼ ro2I3 nþ 2ð Þ nþ 1ð Þ � z nþ 2ð Þ nþ 1ð Þ; g4 ¼ ro2I23 nþ 2ð Þ nþ 1ð Þ;

g5 ¼
0M1 nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ; g6 ¼

0F3 nþ 2ð Þ nþ 1ð Þ; g7 ¼ ro2If3 nþ 2ð Þ nþ 1ð Þ;

g8 ¼ ro2I2 nþ 2ð Þ nþ 1ð Þ � z nþ 2ð Þ nþ 1ð Þ; g9 ¼ ro2If2 nþ 2ð Þ nþ 1ð Þ þ 0M3 nþ 2ð Þ nþ 1ð Þ; g10 ¼
0F3 nþ 1ð Þn;

g11 ¼ ro2I0; g12 ¼ �xb1 nþ 1ð Þ
2
þ 0F3b2 nþ 1ð Þ

2; g13 ¼ ro2If nþ 2ð Þ nþ 1ð Þ � zb1 nþ 2ð Þ nþ 1ð Þ:

(21a2m)

Also, Eq. (17) can be rewritten as

anþ4; bnþ4; cnþ4

� �T
¼ Zn an; anþ1; anþ2; anþ3; bn; bnþ1; bnþ2; bnþ3; cn; cnþ1; cnþ2; cnþ3

� �T
, (22)

where

Zn ¼ A�1n Bn. (23)

Thereafter, we put the initial integration constant vector

a ¼ a0; a1; a2; a3; b0; b1; b2; b3; c0; c1; c2; c3f g
T. (24)

Using Eq. (22), in case of n ¼ 0, 1 and n ¼ i, we can obtain the following relations. For n ¼ 0,

a4; b4; c4f g
T
¼ Z0 a0; a1; a2; a3; b0; b1; b2; b3; c0; c1; c2; c3f g

T
¼ D2a. (25)
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For n ¼ 1,

a5; b5; c5f g
T
¼ Z1 a1; a2; a3; a4; b1; b2; b3; b4; c1; c2; c3; c4f g

T

¼ Z1 �N1 a0; a1; a2; a3; b0; b1; b2; b3; c0; c1; c2; c3f g
T

¼ D3a. ð26Þ

For n ¼ i (iX2),

aiþ4; biþ4; ciþ4

� �T
¼ Zi ai; aiþ1; aiþ2; aiþ3; bi; biþ1; biþ2; biþ3; ci; ciþ1; ciþ2; ciþ3

� �T
¼ Zi �Ni a0; a1; a2; a3; b0; b1; b2; b3; c0; c1; c2; c3f g

T

¼ Diþ2a, ð27Þ

where

N1 ¼

1 . . . . . . . . . . . . . . . . . .

D2ð1; 1Þ D2ð1; 2Þ D2ð1; 3Þ . . . . . . . . . . . . . . . . . . D2ð1; 12Þ

D2ð2; 1Þ D2ð2; 2Þ D2ð2; 3Þ . . . . . . . . . . . . . . . . . . D2ð2; 12Þ

D2ð3; 1Þ D2ð3; 2Þ D2ð3; 3Þ . . . . . . . . . . . . . . . . . . D2ð3; 12Þ

D2ð4; 1Þ D2ð4; 2Þ D2ð4; 3Þ . . . . . . . . . . . . . . . . . . D2ð4; 12Þ

D2ð5; 1Þ D2ð5; 2Þ D2ð5; 3Þ . . . . . . . . . . . . . . . . . .
D2ð5; 12Þ

1

D2ð6; 1Þ D2ð6; 2Þ D2ð6; 3Þ D2ð6; 12Þ

2
66666666666664

3
77777777777775

(28)

and

Ni ¼

Dið1; 1Þ Dið1; 2Þ Dið1; 3Þ . . . . . . . . . . . . . . . . . . Dið1; 12Þ

Diþ1ð1; 1Þ Diþ1ð1; 2Þ Diþ1ð1; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð1; 12Þ

Dið2; 1Þ Dið2; 2Þ Dið2; 3Þ . . . . . . . . . . . . . . . . . . Dið2; 12Þ

Diþ1ð2; 1Þ Diþ1ð2; 2Þ Diþ1ð2; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð2; 12Þ

Dið3; 1Þ Dið3; 2Þ Dið3; 3Þ . . . . . . . . . . . . . . . . . . Dið3; 12Þ

Diþ1ð3; 1Þ Diþ1ð3; 2Þ Diþ1ð3; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð3; 12Þ

Dið4; 1Þ Dið4; 2Þ Dið4; 3Þ . . . . . . . . . . . . . . . . . . Dið4; 12Þ

Diþ1ð4; 1Þ Diþ1ð4; 2Þ Diþ1ð4; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð4; 12Þ

Dið5; 1Þ Dið5; 2Þ Dið5; 3Þ . . . . . . . . . . . . . . . . . . Dið5; 12Þ

Diþ1ð5; 1Þ Diþ1ð5; 2Þ Diþ1ð5; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð5; 12Þ

Dið6; 1Þ Dið6; 2Þ Dið6; 3Þ . . . . . . . . . . . . . . . . . . Dið6; 12Þ

Diþ1ð6; 1Þ Diþ1ð6; 2Þ Diþ1ð6; 3Þ . . . . . . . . . . . . . . . . . . Diþ1ð6; 12Þ

2
6666666666666666666666664

3
7777777777777777777777775

, (29)

where Di(j, k) denotes the component of Di at jth row and kth column. By substituting the integration
constants obtained by Eq. (27) into Eq. (15) and rearranging Eq. (14), the displacement state vector composed
of 12 displacement parameters in Eq. (14) is expressed with respect to the initial integration constant vector a
as follows:

dðxÞ ¼ Xna. (30)

The initial integration constant vector a is represented with respect to 12 nodal displacement components.
For this, the nodal displacement vectors at p and q which mean the two ends of the member (x ¼ 0, l) is
defined by

Ue ¼ Up;Uqh i
T, (31a)

Ua ¼ Ua
y;U

a
z ;o

a
1;o

a
2;o

a
3; f

a
D ET

; a ¼ p; q, (31b)
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where

Up ¼ Uyð0Þ;Uzð0Þ; yð0Þ;�U 0zð0Þ;U
0
yð0Þ;�y

0
ð0Þ

D ET
, (32a)

Uq ¼ UyðlÞ;UzðlÞ; yðlÞ;�U 0zðlÞ;U
0
yðlÞ;�y

0
ðlÞ

D ET
. (32b)

Then, by substituting coordinates of the ends of member (x ¼ 0, l) into Eq. (30) and accounting for Eq. (31),
the nodal displacement vector Ue can be obtained as follows:

Ue ¼ Ha. (33)

Then, elimination of a from Eq. (30) using Eq. (33) yields the displacement state vector consisting of 12
displacement components:

dðxÞ ¼ XnH
�1Ue, (34)

where Xn H
�1denotes the interpolation matrix.

Next, we consider the nodal force vector at the two ends p and q defined by

Fe ¼ Fp;Fqh i
T, (35)

where

Fa ¼ F a
2;F

a
3;M

a
1;M

a
2;M

a
3;M

a
f

D ET
; a ¼ p; q. (36)

Also, the force–deformation relations in Eq. (13) can be expressed as a matrix form

fðxÞ ¼ SdðxÞ (37)

in which

S ¼

� s1 � s2 � � s3 � � s4 � s5

� � �s3 � � s6 � s7 � s8 � s9

� s10 � s5 � s11 � s9 � s12 � s13

� �0:5s3 � � � � s7 � s14 � s9 �

� � �s2 � � �0:5s3 � � s15 � �s5 �

� � s5 � � � s9 � � � s13 �

2
6666666664

3
7777777775
, (38)

where

s1 ¼ xx1 þ zð Þ � ro2I3; s2 ¼ �EI3; s3 ¼ �
0M1; s4 ¼ �

0M2 � ro2If3; s5 ¼ �EIf3,

s6 ¼ xx1 þ zð Þ � ro2I2; s7 ¼ �EI2; s8 ¼ �
0M3 � ro2If2; s9 ¼ �EIf2; s10 ¼ �0:5

0M2 � ro2If3,

s11 ¼ �0:5
0M3 � ro2If2; s12 ¼ GJ � ro2If þ

0Mp; s13 ¼ �EIf; s14 ¼ �0:5
0M3,

s15 ¼ 0:50M2. ð39a2oÞ

Now substitution Eq. (34) into Eq. (37) leads to

fðxÞ ¼ SXnH
�1Ue. (40)

And nodal forces at ends of the element are evaluated as

Fp ¼ �fð0Þ ¼ �SXnð0ÞH
�1Ue, (41a)

Fq ¼ fðlÞ ¼ SXnðlÞH
�1Ue. (41b)

Consequently, the static stiffness matrix in the case that the natural frequency o is zero and the dynamic
stiffness matrix K of a thin-walled beam are calculated as follows:

Fe ¼ KUe, (42a)
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where

K ¼
�SXnð0ÞH

�1

SXnðlÞH
�1

" #
. (42b)

From the computational aspect, the buckling loads and natural frequencies of vibration of a member are
those values of buckling load and frequency that cause the stiffness matrix to become singular, and one can
find as many buckling loads and frequencies as needed from the same matrix. For a structure that is built of
several cross-section members, the stiffness matrix is assembled as is usually done in finite element analysis
using the direct stiffness method.

4. Finite element formulation

Fig. 2 shows the nodal displacement vector of a thin-walled beam element including the restrained warping
effect. To accurately express the element deformation, pertinent shape functions are necessary. In this study,
cubic Hermitian polynomials are adopted to interpolate displacement parameters that are defined at the
centroid axis. This beam element has two nodes per one element and seven nodal degrees of freedom. As a
result, assuming that axial displacement is linear, the element displacement parameters can be interpolated
with respect to the nodal displacements as follows:

Ux ¼ aup þ 1� að Þuq; a ¼
x1

l
, (43a)

Uy ¼ h1vp þ h2o
p
3 þ h3v

q þ h4o
q
3, (43b)

Uz ¼ h1w
p � h2o

p
2 þ h3w

q � h4o
q
2, (43c)

y ¼ h1o
p
1 � h2f p

þ h3o
q
1 � h4f

q, (43d)

where

up ¼ Uxð0Þ; vp ¼ Uyð0Þ; wp ¼ Uzð0Þ;

op
1 ¼ yð0Þ; op

2 ¼ �U 0zð0Þ; op
3 ¼ U 0yð0Þ; f p

¼ �y0ð0Þ (44a2g)

and hi denotes cubic Hermitian polynomial as follows:

h1 ¼ 2a3 � 3a2 þ 1; h2 ¼ a3 � 2a2 þ a
� �

l,

h3 ¼ �2a3 þ 3a2; h4 ¼ a3 � a2
� �

l. ð45a2dÞ

Substituting Eq. (43) into Eq. (10) and integrating along the element length, the equilibrium equations of a
thin-walled beam are obtained in a matrix form. In this study, stiffness matrices and the mass matrix are
evaluated using a Gauss numerical integration scheme.

5. Numerical examples

To demonstrate the accuracy and validity of this study, the flexural–torsional buckling and free vibration
analysis of thin-walled beam with non-symmetric cross-section subjected to linearly variable axial force and
Fig. 2. Nodal displacement vector of a Hermitian beam element.



ARTICLE IN PRESS
N.-Il. Kim et al. / Journal of Sound and Vibration 299 (2007) 739–756 749
the lateral buckling analysis by the proposed method are performed and compared with the finite element
solutions using the Hermitian beam elements and ABAQUS’s shell elements. Particularly, the influence of
constant and linearly variable axial force on the vibrational behavior of non-symmetric beam is investigated.

5.1. Buckling loads of beam subjected to constant axial force

Using the static element stiffness matrix by this study, the flexural–torsional buckling loads of cantilevered
beam with non-symmetric cross-section, as shown in Fig. 3, subjected to constant axial force are evaluated.
When the axial force acts at the centroid, numerical solutions by this study are evaluated and compared with
those by the thin-walled beam elements and 600 nine-noded shell elements (S9R5) of ABAQUS in Table 1.
Table 1 shows that the lowest five flexural–torsional buckling loads by this study, using only a single element,
are in a good agreement with those by ABAQUS’s shell elements. It should be noted that the present
numerical solutions are accurate for the higher buckling modes as well as the lower ones because the
displacement state vector in Eq. (34) satisfies the homogeneous form of the equilibrium equations. Still, a large
number of Hermitian beam elements are required to achieve sufficient accuracy in the higher modes.

5.2. Free vibration analysis of beam subjected to constant axial force

In this example, the flexural–torsional free vibration analysis of cantilevered beam and clamped beam at
both ends with non-symmetric cross-section subjected to constant axial force is performed. The same
geometric and material data of beams as the one used in the previous example are adopted. Here, the buckling
loads of cantilevered and clamped beams obtained from 20 Hermitian beam elements are 13.8 and 193.784N,
respectively. The values of 6.9 and 96.892N are adopted as initial compressive and tensile forces for
cantilevered and clamped beams, respectively, which are half of buckling loads of two beams.

The lowest ten coupled natural frequencies of cantilevered and clamped beams are presented in Tables 2
and 3, respectively. In general, it is not possible to derive the closed-form solution for the flexural–torsional
vibration of cantilevered and clamped beams with non-symmetric cross-section. Hence, numerical solutions by
this study are given and compared with the FE solutions obtained from various numbers of Hermitian beam
elements. In particular, the results by 600 shell elements using S9R5 of ABAQUS are presented together for
cantilevered and clamped beams without initial axial forces. From Tables 2 and 3, it can be found that this
study yields accurate solutions by using only a single element, while at least 20 Hermitian beam elements are
demanded for the reasonably good results in the higher vibrational modes. As shown in Tables 2 and 3, the
(a)

(b)

Fig. 3. Cantilever beam with non-symmetric channel section: (a) non-symmetric channel section, (b) cantilever beam in the non-symmetric

channel section.
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Table 1

Flexural–torsional buckling loads for cantilevered beam (N)

Mode Hermitian beam elements ABAQUS

600-S9R5

This study

(n ¼ 50)

4 6 8 10 20 40

1 13.801 13.800 13.800 13.800 13.800 13.800 14.001 13.800

2 112.80 112.60 112.56 112.55 112.55 112.55 113.10 112.55

3 191.84 191.84 191.84 191.84 191.84 191.84 190.08 191.84

4 261.82 259.25 258.77 258.64 258.55 258.54 256.67 258.54

5 430.08 418.57 416.05 415.31 414.80 414.76 408.53 414.76

Table 2

Natural frequencies for cantilevered beam subjected to constant axial force [(rad/s)2] (0F1cr ¼ 13.8N)

Mode Hermitian beam elements ABAQUS

600-S9R5

This study

(n ¼ 50)

4 6 8 10 20 40

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) — (0.014)

1 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.027

[0.039] [0.039] [0.039] [0.039] [0.039] [0.039] — [0.039]

(0.326) (0.326) (0.325) (0.325) (0.325) (0.325) — (0.325)

2 0.337 0.337 0.336 0.336 0.336 0.336 0.331 0.336

[0.348] [0.347] [0.347] [0.347] [0.347] [0.347] — [0.347]

(0.684) (0.682) (0.681) (0.681) (0.681) (0.681) —n (0.681)

3 0.710 0.708 0.707 0.707 0.707 0.707 0.696 0.707

[0.732] [0.729] [0.729] [0.729] [0.729] [0.729] — [0.729]

(1.006) (1.005) (1.004) (1.004) (1.004) (1.004) — (1.004)

4 1.077 1.075 1.075 1.075 1.074 1.074 1.074 1.074

[1.151] [1.149] [1.149] [1.149] [1.149] [1.149] — [1.149]

(4.799) (4.765) (4.758) (4.756) (4.754) (4.754) — (4.754)

5 4.904 4.870 4.863 4.860 4.859 4.859 4.766 4.859

[5.006] [4.972] [4.965] [4.962] [4.961] [4.961] — [4.961]

(7.114) (7.042) (7.027) (7.023) (7.020) (7.019) — (7.019)

6 7.284 7.210 7.194 7.189 7.186 7.186 7.083 7.186

[7.457] [7.379] [7.363] [7.358] [7.355] [7.355] — [7.355]

(18.39) (18.09) (18.00) (17.98) (17.96) (17.96) — (17.96)

7 18.64 18.35 18.26 18.24 18.22 18.22 17.95 18.22

[18.88] [18.59] [18.52] [18.49] [18.48] [18.48] — [18.48]

(20.14) (20.05) (20.01) (20.00) (19.99) (19.99) — (19.99)

8 20.31 20.21 20.17 20.16 20.15 20.15 19.36 20.15

[20.49] [20.38] [20.34] [20.32] [20.32] [20.31] — [20.31]

(24.63) (24.33) (24.21) (24.18) (24.15) (24.15) — (24.15)

9 24.89 24.57 24.46 24.42 24.39 24.39 23.58 24.39

[25.14] [24.82] [24.70] [24.66] [24.64] [24.64] — [24.64]

(56.80) (47.96) (47.21) (46.95) (46.76) (46.75) — (46.75)

10 57.39 48.57 47.80 47.54 47.36 47.35 46.52 47.34

[57.99] [49.17] [48.40] [48.14] [47.95] [47.94] — [47.94]

Note: [ ] natural frequency with an initial compressive force 6.9N.

( ) natural frequency with an initial tensile force 6.9N.

N.-Il. Kim et al. / Journal of Sound and Vibration 299 (2007) 739–756750
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Table 3

Natural frequencies for clamped beam subjected to constant axial force [(rad/s)2] (0F1cr ¼ 193.784N)

Mode Hermitian beam elements ABAQUS

600-S9R5

This study

(n ¼ 50)

4 6 8 10 20 40

1 (0.443) (0.440) (0.440) (0.440) (0.440) (0.440) — (0.440)

0.915 0.911 0.911 0.910 0.910 0.910 0.914 0.910

[1.377] [1.369] [1.368] [1.367] [1.367] [1.367] — [1.367]

2 (2.684) (2.667) (2.663) (2.662) (2.661) (2.661) — (2.661)

3.144 3.123 3.118 3.116 3.115 3.115 3.046 3.115

[3.602] [3.575] [3.569] [3.566] [3.565] [3.565] — [3.565]

3 (4.135) (4.069) (4.056) (4.053) (4.050) (4.050) — (4.050)

5.912 5.827 5.811 5.806 5.803 5.803 5.780 5.803

[7.681] [7.567] [7.545] [7.538] [7.534] [7.533] — [7.533]

4 (15.55) (15.10) (14.97) (14.93) (14.90) (14.90) — (14.90)

18.02 17.74 17.69 17.68 17.66 17.66 17.24 17.66

[19.79] [19.49] [19.44] [19.42] [19.41] [19.41] — [19.41]

5 (16.25) (15.98) (15.94) (15.92) (15.91) (15.91) — (15.91)

9.39 18.82 18.67 18.63 18.60 18.60 18.31 18.60

[20.93] [20.84] [20.82] [20.81] [20.81] [20.81] — [20.81]

6 (20.11) (20.07) (20.06) (20.05) (20.05) (20.05) — (20.05)

20.71 20.63 20.61 20.61 20.61 20.61 19.20 20.61

[23.60] [22.88] [22.71] [22.67] [22.63] [22.63] — [22.63]

7 (50.57) (39.48) (38.68) (38.44) (38.27) (38.26) — (38.26)

57.76 46.16 45.29 45.02 44.84 44.83 43.99 44.83

[64.95] [52.84] [51.88] [51.60] [51.41] [51.40] — [51.40]

8 (57.73) (56.00) (55.47) (55.31) (55.21) (55.21) — (55.20)

61.69 59.82 59.28 59.12 59.02 59.01 56.81 59.01

[65.66] [63.64] [63.08] [62.93] [62.82] [62.81] — [62.81]

9 (129.9) (84.56) (83.01) (81.92) (81.15) (81.10) — (81.10)

141.7 95.08 93.21 92.07 91.27 91.22 87.77 91.21

[153.5] [105.6] [103.4] [102.2] [101.4] [101.3] — [101.3]

10 (152.9) (148.9) (145.6) (144.5) (143.7) (143.6) — (143.6)

154.6 152.2 151.2 150.6 150.1 150.1 127.6 150.1

[156.4] [154.1] [153.6] [153.4] [153.3] [153.3] — [153.3]

Note: [ ] natural frequency with an initial compressive force 96.892N.

( ) natural frequency with an initial tensile force 96.892N.
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present solutions are in good agreement with those of ABAQUS’ shell elements. Also, the influence of initial
compressive and tensile forces on the coupled natural frequencies is predominant in the first few modes. Figs. 4
and 5, respectively, show the relative difference of the first two natural frequencies for beams subjected to
initial compressive and tensile forces versus various lengths of beam. Here, oC and oT denote the frequency
including the initial compressive force and tensile force, respectively. It can be observed from Figs. 4 and 5 that
the effect of initial axial forces on the fundamental frequency of clamped beam is the same as the 50% ratio of
these forces to buckling loads. However, those effects for cantilevered beam are a little smaller than those of
clamped beam.

5.3. Buckling and free vibration analysis of beam subjected to linearly variable axial force

This example concerns the cantilevered beam subjected to linearly variable axial compressive force, which is
0F1 at free end and 20F1 at fixed end. In this case, due to the variable axial force, the buckling loads and the
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Fig. 4. Relative difference of natural frequencies versus length of beam due to initial compressive force.
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Fig. 5. Relative difference of natural frequencies versus length of beam due to initial tensile force.
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natural frequencies cannot be determined by the approach proposed by Kim et al. [27]. In Table 4, the
flexural–torsional buckling loads by this study are presented and compared with the FE solutions obtained
from various numbers of Hermitian beam elements. As shown in Table 4, in the current study only a single
element gives the buckling loads of thin-walled beam with non-symmetric cross-section subjected to linearly
variable axial force.
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Table 5

Natural frequencies for cantilevered beam subjected to linearly variable axial force [(rad/s)2] (0F1cr ¼ 10.601N)

Mode Hermitian beam elements This study

(n ¼ 50)

4 6 8 10 20 40

1 0.014 0.014 0.014 0.014 0.014 0.014 0.014

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 0.325 0.325 0.324 0.324 0.324 0.324 0.324

(0.313) (0.312) (0.312) (0.312) (0.312) (0.312) (0.312)

3 0.683 0.681 0.681 0.681 0.681 0.681 0.681

(0.650) (0.648) (0.648) (0.648) (0.648) (0.648) (0.648)

4 1.007 1.006 1.005 1.005 1.005 1.005 1.005

(0.944) (0.942) (0.942) (0.942) (0.942) (0.942) (0.942)

5 4.789 4.757 4.750 4.748 4.748 4.748 4.748

(4.672) (4.641) (4.635) (4.633) (4.633) (4.634) (4.634)

6 7.105 7.034 7.020 7.016 7.014 7.014 7.014

(6.930) (6.863) (6.849) (6.845) (6.844) (6.844) (6.845)

7 18.37 18.07 17.98 17.96 17.94 17.94 17.94

(18.08) (17.77) (17.69) (17.66) (17.65) (17.65) (17.65)

8 20.13 20.04 20.00 19.99 19.99 19.99 19.99

(19.96) (19.88) (19.84) (19.83) (19.83) (19.83) (19.83)

9 24.61 24.31 24.19 24.16 24.14 24.14 24.14

(24.34) (24.05) (23.94) (23.91) (23.89) (23.89) (23.89)

10 56.75 47.91 47.15 46.90 46.71 46.70 46.70

(56.10) (47.25) (46.50) (46.25) (46.07) (46.06) (46.06)

Note: ( ) natural frequency with an initial compressive force 0F1cr.

Table 4

Flexural–torsional buckling loads for cantilevered beam subjected to linearly variable axial force (N)

Mode Hermitian beam elements This study

(n ¼ 50)

2 6 10 20 40

1 10.607 10.601 10.601 10.601 10.601 10.601

2 78.016 76.920 76.886 76.881 76.880 76.880

3 146.83 146.74 146.74 146.74 146.74 146.74

4 210.26 174.11 173.63 173.56 173.56 173.56

5 341.27 281.17 278.76 278.35 278.32 278.32
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Next, the coupled natural frequencies of beam subjected to linearly variable axial force, which have half of
buckling load and buckling load are presented in Table 5. The excellent agreement between results from this
study using a single element and those from 20 beam elements is evident. Additionally, the relative difference
of the first two natural frequencies for cantilevered beam subjected to linearly variable compressive force,
which is half the value of fundamental buckling load, is depicted in Fig. 6 with respect to the length of beam.
From Fig. 6, it is interesting to note that the influence of linearly variable axial force on frequencies is the same
as that of beam with constant axial force.
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Fig. 6. Relative difference of natural frequencies of cantilevered beam versus length of beam due to linearly variable compressive force.

Table 6

Lateral buckling loads subjected to vertical loads (N)

Hermitian beam elements ABAQUS

1800-S8R5

This study

(n ¼ 50)

2 6 10 20 40

�4.4315 �4.2595 �4.2569 �4.2564 �4.2564 �4.1086 �4.2564

6.1114 5.8132 5.7987 5.7957 5.7955 5.8933 5.7954
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5.4. Lateral buckling analysis

The purpose of our final example is to evaluate the lateral buckling loads for the thin-walled beam with non-
symmetric cross-section. The beam with cross-section, as shown in Fig. 3, subjected to the lateral tip load at
the centroid of the free end is considered. In Table 6, the results of this study are given and compared with the
results of Hermitian beam elements and ABAQUS solutions using 1600 eight-noded shell elements (S8R5),
which is modeled by Kim et al. [35]. It can be observed from Table 6, the solutions in this study are greatly in
agreement with the solutions by ABAQUS’s shell elements. Therefore, it is judged that the present
formulation and method developed can predict lateral buckling loads of non-symmetric thin-walled beam.

6. Conclusion

For the flexural–torsional buckling and free vibration analysis of thin-walled beam with non-symmetric
cross-section subjected to linearly variable axial force, the static and dynamic stiffness matrices are newly
presented based on the power series method. In addition, the static stiffness matrix for the lateral buckling
analysis of non-symmetric beam is presented for the first time.

Through the numerical examples, it is demonstrated that results from this study using only a single element
have shown to be in excellent agreement with the solutions using Hermitian beam element and ABAQUS’s
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shell elements. It is believed that the proposed beam element eliminates discretization errors and is capable of
predicting an infinite number of buckling loads and natural frequencies of beams by means of a finite number
of coordinates. Also, the influence of constant and linearly variable axial forces on vibration behavior is
investigated.
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